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1. Motivation & Problem Definition

Human Mobility Prediction Challenge (HuMob Challenge) 2024
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1. Motivation & Problem Definition

Challenges in Human Mobility Prediction

« Data quality: Sparse and unevenly distributed spatially and
temporarily

« Complexity of human mobility patterns

 Transfer model between different cities



-
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2. Our Approach
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2. Our Approach
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2. Our Approach
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[1] Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).
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Mixture-of-Experts
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2. Our Approach

Transfer Learning

Adapt learned representations from a large-scale mobility dataset
of one city to predict mobility patterns in different cities.

Differential Learning Rates:

« Spatial embeddings: Higher learning rate (10x the base rate) to
quickly adapt to unique spatial characteristics of a new city.

* General Parameters: Lower learning rate to retain broad
knowledge from the initial training phase.



3. Experiments

Data from [1] e
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[1] Yabe, Takahiro, et al. "YJMob100K: City-scale and longitudinal dataset of anonymized human
mobility trajectories." Scientific Data 11.1 (2024): 397.

11



3. Experiments
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3. Experiments

Accuracy
* the percentage of correct location predictions

GEO-BLEU
 evaluates the similarity of geospatial sequences on place n-gram accuracy

Dynamic Time Wrapping (DTW)
« Minimize the cumulative distance over all points, adjusted for temporal shift
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3. Experiments

Historical frequency (HF): predicts future locations using historical visit patterns based on time and weekday

Naive BERT

Method A B C D
GEO-BLEUT DTW | Acc.! GEO-BLEUT DTW| Acc.T GEO-BLEUT DTW| Acc.? GEO-BLEUT DTW| Acc. ?

HF 0.266 80.3  20.4% 0.265 564  21.0% 0.251 424  20.8% 0.295 80.0  21.0%

BERT 0.256 35.7  23.8% 0.284 20.6  27.0% 0.253 65.6  18.2% 0.253 65.6  18.2%

ST-MoE-BERT 0.286 30.2  27.9% 0.297 293  28.7% 0.297 19.7  28.9% 0.300 48.1  26.5%

= best result
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3. Experiments

Ablation study

Impact of Transfer Learning on Prediction Performance

Method A B C D

GEO-BLEUT DTW | Acc.T GEO-BLEUT DTW | Acc.T GEO-BLEUT DTW | Acc.T GEO-BLEUT DTW | Acc.?
ST-MoE-BERT w/o PT 0.286 30.2 27.9% 0.286 28.2 27.5% 0.294 20.7 27.9% 0.250 67.6 21.4%
ST-MoE-BERT - - - 0.297 29.3 28.7% 0.297 19.7 28.9% 0.300 48.1 26.5%
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3. Experiments

Hyperparameters

Pretrained Model
Learning Rate 0.0003
Weight Decay 0.001
Number of Hidden Layers 12
Hidden Size 768
Number of Attention Heads 16
Number of Experts 8
Dropout 0.1
Day Embedding Size 64
Time Embedding Size 64
Day of Week Embedding Size 64
Weekday Embedding Size 32
Location Embedding Size 256

Fine-Tuned Model
Learning Rate 0.00005
Location Embedding Learning Rate 0.0005
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Our Contribution

 We Iintroduce ST-MoE-BERT, a transformer-based method that combines
BERT with an MoE layer to predict long-term cross-city mobility

* Transfer learning strategy that employs different learning rates, enhancing
prediction accuracy in different cities

 We demonstrate that ST-MoE-BERT outperforms the baseline methods
with an average improvement of 8.29%
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Thank you!

Haoyu He
ne.haoyul@northeastern.edu

nttps://he-h.github.io/
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