

#### ST-MoE-BERT: A Spatial-Temporal Mixtureof-Experts Framework for Long-Term Cross-City Mobility Prediction

Haoyu He, Haozheng Luo, Qi (Ryan) Wang PhD Student in Civil and Environmental Engineering Northeastern University. he.haoyu1@northeastern.edu

#### Outline



#### 1. Motivation & Problem Definition

Human Mobility Prediction Challenge (HuMob Challenge) 2024



Photo by FLY:D on Unsplash



**Urban Planning** 

**Emergency Response** 

### 1. Motivation & Problem Definition

Challenges in Human Mobility Prediction

- Data quality: Sparse and unevenly distributed spatially and temporarily
- Complexity of human mobility patterns
- Transfer model between different cities

#### 1. Motivation & Problem Definition



Figure from <a href="https://wp.nyu.edu/humobchallenge2024">https://wp.nyu.edu/humobchallenge2024</a>





#### Embeddings





#### BERT



Figure from [1]

[1] Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018).



#### Mixture-of-Experts



FFN: Feed-forward network



Transfer Learning

Adapt learned representations from a large-scale mobility dataset of one city to predict mobility patterns in different cities.

#### **Differential Learning Rates:**

- **Spatial embeddings:** Higher learning rate (10x the base rate) to quickly adapt to unique spatial characteristics of a new city.
- **General Parameters:** Lower learning rate to retain broad knowledge from the initial training phase.





[1] Yabe, Takahiro, et al. "YJMob100K: City-scale and longitudinal dataset of anonymized human mobility trajectories." *Scientific Data* 11.1 (2024): 397.



Average number of user records per **A** day, **B** timewindow



| City            | Α       | В      | С      | D     |
|-----------------|---------|--------|--------|-------|
| Number of Users | 100,000 | 25,000 | 20,000 | 6,000 |



Accuracy

• the percentage of correct location predictions

**GEO-BLEU** 

• evaluates the similarity of geospatial sequences on place n-gram accuracy

Dynamic Time Wrapping (DTW)

• Minimize the cumulative distance over all points, adjusted for temporal shift



#### Results

Historical frequency (HF): predicts future locations using historical visit patterns based on time and weekday Naïve BERT

| Method      |           | А                |        | В         |                  |        | С         |                  |        | D         |                  |        |
|-------------|-----------|------------------|--------|-----------|------------------|--------|-----------|------------------|--------|-----------|------------------|--------|
|             | GEO-BLEU↑ | DTW $\downarrow$ | Acc. ↑ |
| HF          | 0.266     | 80.3             | 20.4%  | 0.265     | 56.4             | 21.0%  | 0.251     | 42.4             | 20.8%  | 0.295     | 80.0             | 21.0%  |
| BERT        | 0.256     | 35.7             | 23.8%  | 0.284     | 20.6             | 27.0%  | 0.253     | 65.6             | 18.2%  | 0.253     | 65.6             | 18.2%  |
| ST-MoE-BERT | 0.286     | 30.2             | 27.9%  | 0.297     | 29.3             | 28.7%  | 0.297     | 19.7             | 28.9%  | 0.300     | 48.1             | 26.5%  |





#### Ablation study

Impact of Transfer Learning on Prediction Performance

| Method             |           | А                        |        |           | В                |        |           | С                |        |           | D                |        |
|--------------------|-----------|--------------------------|--------|-----------|------------------|--------|-----------|------------------|--------|-----------|------------------|--------|
|                    | GEO-BLEU↑ | $\mathrm{DTW}\downarrow$ | Acc. ↑ | GEO-BLEU↑ | DTW $\downarrow$ | Acc. ↑ | GEO-BLEU↑ | DTW $\downarrow$ | Acc. ↑ | GEO-BLEU↑ | DTW $\downarrow$ | Acc. ↑ |
| ST-MoE-BERT w/o PT | 0.286     | 30.2                     | 27.9%  | 0.286     | 28.2             | 27.5%  | 0.294     | 20.7             | 27.9%  | 0.250     | 67.6             | 21.4%  |
| ST-MoE-BERT        | -         | -                        | -      | 0.297     | 29.3             | 28.7%  | 0.297     | 19.7             | 28.9%  | 0.300     | 48.1             | 26.5%  |

#### 

### 3. Experiments

#### Hyperparameters

| Pretrained Model                 |         |  |  |  |  |
|----------------------------------|---------|--|--|--|--|
| Learning Rate                    | 0.0003  |  |  |  |  |
| Weight Decay                     | 0.001   |  |  |  |  |
| Number of Hidden Layers          | 12      |  |  |  |  |
| Hidden Size                      | 768     |  |  |  |  |
| Number of Attention Heads        | 16      |  |  |  |  |
| Number of Experts                | 8       |  |  |  |  |
| Dropout                          | 0.1     |  |  |  |  |
| Day Embedding Size               | 64      |  |  |  |  |
| Time Embedding Size              | 64      |  |  |  |  |
| Day of Week Embedding Size       | 64      |  |  |  |  |
| Weekday Embedding Size           | 32      |  |  |  |  |
| Location Embedding Size          | 256     |  |  |  |  |
| Fine-Tuned Model                 |         |  |  |  |  |
| Learning Rate                    | 0.00005 |  |  |  |  |
| Location Embedding Learning Rate | 0.0005  |  |  |  |  |



#### **Our Contribution**

- We introduce ST-MoE-BERT, a transformer-based method that combines BERT with an MoE layer to predict long-term cross-city mobility
- Transfer learning strategy that employs different learning rates, enhancing prediction accuracy in different cities
- We demonstrate that ST-MoE-BERT outperforms the baseline methods with an average improvement of 8.29%



# Thank you!

Haoyu He he.haoyu1@northeastern.edu https://he-h.github.io/

Northeastern University