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1. Motivation & Problem Definition 

Human Mobility Prediction Challenge (HuMob Challenge) 2024
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1. Motivation & Problem Definition 

Challenges in Human Mobility Prediction

• Data quality: Sparse and unevenly distributed spatially and 

temporarily

• Complexity of human mobility patterns

• Transfer model between different cities
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1. Motivation & Problem Definition 
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Figure from https://wp.nyu.edu/humobchallenge2024

https://wp.nyu.edu/humobchallenge2024/
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Embeddings
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2. Our Approach

BERT 
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[1] Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language 

understanding." arXiv preprint arXiv:1810.04805 (2018).

Figure from [1]



2. Our Approach

Mixture-of-Experts
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FFN: Feed-forward network



2. Our Approach

Transfer Learning

Adapt learned representations from a large-scale mobility dataset 
of one city to predict mobility patterns in different cities.

Differential Learning Rates:

• Spatial embeddings: Higher learning rate (10x the base rate) to 
quickly adapt to unique spatial characteristics of a new city.

• General Parameters: Lower learning rate to retain broad 
knowledge from the initial training phase.
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3. Experiments

Data from [1]
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Training (90%)

Testing (3000 users)

Validation (10%)

[1] Yabe, Takahiro, et al. "YJMob100K: City-scale and longitudinal dataset of anonymized human 

mobility trajectories." Scientific Data 11.1 (2024): 397.



3. Experiments
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Average number of user records per A day, B timewindow 



3. Experiments

Accuracy
• the percentage of correct location predictions

GEO-BLEU
• evaluates the similarity of geospatial sequences on place n-gram accuracy

Dynamic Time Wrapping (DTW)
• Minimize the cumulative distance over all points, adjusted for temporal shift
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3. Experiments

Results
Historical frequency (HF): predicts future locations using historical visit patterns based on time and weekday

Naïve BERT
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= best result



3. Experiments

Ablation study
Impact of Transfer Learning on Prediction Performance
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3. Experiments

Hyperparameters
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Our Contribution

• We introduce ST-MoE-BERT, a transformer-based method that combines 
BERT with an MoE layer to predict long-term cross-city mobility

• Transfer learning strategy that employs different learning rates, enhancing 
prediction accuracy in different cities

• We demonstrate that ST-MoE-BERT outperforms the baseline methods 
with an average improvement of 8.29%
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Thank you!

Haoyu He
he.haoyu1@northeastern.edu

https://he-h.github.io/

Northeastern University
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