
RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
Haoyu He*♮ Haozheng Luo*† Yan Chen† Ryan Qi Wang ♮

♮Northeastern University, Boston, MA 02115 USA; †Northwestern University, Evanston, IL 60208 USA

Introduction

Background:
• Periodicity gap: Traditional models

miss long-term patterns (93% of trajec-
tories are predictable) due to vanishing
gradients or static time treatment

• Reasoning gap: Mobility-specific
models fail to leverage LLMs’ proven
capabilities in complex spatio-temporal
reasoning

time as static, failing to disentangle multi-scale temporal patterns [27, 73]. To bridge this gap, we39

decompose each trajectory into meaningful segments, tokenizing each into discrete representations40

that capture local patterns (e.g., morning commutes) through intra-segment attention. These segment41

tokens are then pooled into higher-level representations, enabling inter-segment attention to model42

long-range dependencies across days, as illustrated in Figure 1, thereby reducing sequence length and43

quadratically lowering attention cost. To enhance semantic richness, each token is augmented with a44

pre-computed prompt embedding—derived from a frozen LLM encompassing trajectory context and45

task descriptions-before being passed into the backbone for deep reasoning.46

Figure 1: Motivation for RHYTHM. Instead of process-
ing entire trajectories as a continuous sequence, RHYTHM
segments trajectories into tokens to better capture periodic
patterns.

Recent work demonstrates LLMs’ re-47

markable capabilities not only as se-48

quential representation extractors to49

capture the spatio-temporal attention50

patterns but also as reasoning models51

[13, 9]. Prior works [25, 60, 17, 21]52

demonstrate their reasoning capabili-53

ties through techniques such as few-54

shot prompting [9], chain-of-thought55

reasoning [51, 50, 67], and in-context56

learning [16]. However, mobility-57

specific models like PMT [72] and ST-58

MoE-BERT [26] lack the capability to59

leverage LLMs for modeling complex60

correlations in human flows, limiting61

their predictive performance. By in-62

tegrating an LLM-based reasoning module, RHYTHM more effectively models these complex63

interdependencies. To maintain scalability, RHYTHM adopts a parameter-efficient adaptation strat-64

egy by freezing the pretrained LLM and avoid extensive fine-tuning. This design captures fine-grained65

spatio-temporal dynamics, deep semantic context, and leverages LLM reasoning—all while mini-66

mizing computational and memory overhead—making RHYTHM ideally suited for deployment in67

resource-constrained, real-world environments.68

Contributions. We propose RHYTHM (as shown in Figure 2), a unified, computationally efficient69

framework that captures both temporal dynamics and cyclical patterns. Our contributions are as70

follows:71

• We introduce temporal tokenization that encodes daily mobility patterns as discrete tokens, reducing72

the processed sequence length while capturing cyclical and multi-scale mobility dependencies73

through hierarchical attention mechanism.74

• We design an efficient prompt-guided approach that integrates semantic trajectory information and75

task description with segment embeddings, enhancing RHYTHM’s ability to interpret complex76

mobility patterns.77

• We propose a parameter-efficient adaptation strategy using frozen pretrained LLMs, reducing train-78

able parameters to 12.37% of the full model size and achieving a 24.6% reduction in computational79

cost compared to other baselines.80

• Empirically, we evaluate RHYTHM on three real-world mobility datasets, demonstrating superior81

performance compared to state-of-the-art models. RHYTHM achieves a 2.4% improvement in82

prediction accuracy, with a 5.0% increase on weekends.83

2 Related Work84

In this section, we provide a brief overview of related work, with a detailed review in Appendix D85

Mobility Prediction. Human mobility prediction progresses from probabilistic approaches [76, 22]86

to deep learning architectures, as demonstrated in recent studies. Sequence models like LSTM [37]87

and attention mechanisms [19] improve temporal modeling, while graph-based methods [56, 14]88

integrate spatial relationships. Transformer architectures [66, 78, 46] further enhance long-range89

dependency modeling but struggle with the hierarchical structure of mobility patterns. Recent work90

with LLMs [20, 65] shows promise but typically treats mobility as generic sequences, ignoring the91

inherent periodicity of human movement.92
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Contribution. We propose RHYTHM
(Reasoning with Hierarchical Temporal
Tokenization for Human Mobility)
• Temporal tokenization captures multi-

scale periodicity via hierarchical atten-
tion

• Prompt-guided approach enhances
semantic pattern understanding

• 87.6% parameters frozen → 24.6%
computational savings

Problem Definition
Given:
• Historical trajectory:
X = {x1, x2, . . . , xT }
where xi = (ti, li)

– ti: timestamp
– li ∈ L: location from finite set L

• Future timestamps
T = {tT+1, tT+2, . . . , tT+H}
– H: prediction horizon

Objective: Predict future locations Y =
{lT+1, lT+2, . . . , lT+H}
Goal: Learn mapping f : (X , T ) 7→ Y

Model

Figure 2: The proposed architecture of RHYTHM. Our framework processes historical trajectories
through spatio-temporal embedding and temporal tokenization (b), capturing local and global depen-
dencies via hierarchical attention. Segment representations are enriched with semantic embeddings
from trajectory information, while future timestamps incorporate task description context (a). This
combined sequence passes through a frozen LLM backbone with output projection to generate
location predictions.

Cross-domain Adaptation of LLMs. LLMs emerge as powerful natural language processing systems93

and quickly evolve into general-purpose foundation models capable of reasoning and generation94

tasks [9, 1]. Their remarkable adaptability has enabled successful applications in computer vision95

[5, 54], speech [70, 47], biomedicine [83, 45, 58], time series forecasting [11, 82], and finance96

[32, 71]. While many adaptations rely on parameter-efficient fine-tuning methods like LoRA [29],97

recent approaches maintain frozen LLMs by utilizing them as sequential representation extractors,98

preserving their semantic capabilities while reducing computational costs [41, 33, 2]. To the best99

of our knowledge, RHYTHM is the first approach that adapts frozen LLMs to mobility prediction100

without compromising the model’s reasoning capabilities or requiring extensive fine-tuning.101

3 Method102

In this section, we introduce RHYTHM, an LLM-based deep architecture tailored for prompt-guided103

representation learning of spatio-temporal patterns with its periodicity, as shown in Figure 2. In the104

following, we first define the problem and then introduce the model structure of RHYTHM, including105

its computational efficiency and theoretical guarantees.106

3.1 Problem definition107

Let X = {x1, x2, . . . , xT } denote a user’s historical mobility trajectory, where xi = (ti, li) represents108

a timestamped location, with ti being the timestamp and li → L being the corresponding location109

from a finite set of possible locations L. Given a sequence of consecutive future timestamps110

T = {tT+1, tT+2, . . . , tT+H} where H is the prediction horizon, our objective is to predict the111

corresponding sequence of locations Y = {lT+1, lT+2, . . . , lT+H} that the user will visit. Formally,112

we seek a function f : (X , T ) ↑↓ Y that maps historical trajectories and future timestamps to their113

corresponding locations.114

3.2 Model structure115

Spatio-Temporal Feature Encoding. For each observation xi, we construct temporal embeddings to116

capture cyclical patterns in human movements:117

Etemporal
i = EToD(ti)↔EDoW(ti),

where ·↔· indicates concatenation, EToD represents the time-of-day embedding (capturing 24-hour118

cycles), and EDoW represents the day-of-week embedding (capturing weekly patterns). These119

are learnable embeddings that map discrete temporal indices to continuous representations, with120

Etemporal
i → RD with D matching the backbone LLM’s input dimension.121
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Structure:
• Temporal Tokenization: Capture multi-scale patterns by reducing T → N segments

si = {E(i−1)L+1, . . . , EiL} (partition)

Ẽ(i) = Attention(si) (local patterns)

SEi = Pool(Ẽ(i)) (compress)

S̃E1:N = Attention(SE1:N ) (global patterns)

• Semantic Embedding: Enrich tokens with trajectory context using frozen LLM
TEi = SelectLast(LLM(Prompt(si)))

CEi = S̃Ei +TEi

• LLM Reasoning: Leverage pretrained backbone for location prediction

hi = LLM(CEi)

P (lT+j |X , T ) = softmax(WohT+j + bo)

Efficiency Gains:
• Offline semantic embedding computation—no runtime LLM inference

• Attention complexity: O((T +H)2) → O((N +H)2) where N ≪ T

• Frozen LLM backbone: only 12.37% trainable parameters

Experiments
RHYTHM to excel in top-rank precision metrics. Overall, RHYTHM achieves a 2.4% improvement261

in Accuracy@1 and a 1.0% Accuracy@5 respectively compared to the best baseline model.262

Table 1: Performance of RHYTHM and baselines on the Kumamoto, Sapporo, and Hiroshima
datasets. The evaluation metrics include Accuracy@k for different values of k, with variance ↗ 2%.
The best results are highlighted in bold, and the second-best results are underlined. RHYTHM
demonstrates superior performance compared to baselines across most configurations.

Kumamoto Sapporo Hiroshima
Model Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5

LSTM 0.2652 0.4799 0.5472 0.2310 0.3940 0.4526 0.2129 0.3775 0.4415
DeepMove 0.2779 0.4986 0.5683 0.2825 0.4672 0.5264 0.2804 0.4810 0.5477
PatchTST 0.2751 0.5018 0.5716 0.2703 0.4582 0.5168 0.2752 0.4839 0.5522
iTransformer 0.2609 0.4724 0.5412 0.2696 0.4500 0.5070 0.2804 0.4857 0.5523
TimeLLM 0.2712 0.4848 0.5535 0.2792 0.4746 0.5352 0.2698 0.4753 0.5426
CMHSA 0.2862 0.5182 0.5887 0.2890 0.4901 0.5525 0.2874 0.5001 0.5684
PMT 0.2697 0.4475 0.5187 0.2878 0.4896 0.5522 0.2850 0.4982 0.5668
COLA 0.2864 0.5186 0.5896 0.2847 0.4865 0.5497 0.2874 0.5013 0.5708
ST-MoE-BERT 0.2862 0.5155 0.5871 0.2869 0.4856 0.5480 0.2839 0.4925 0.5601
Mobility-LLM 0.2666 0.4793 0.5448 0.2838 0.4703 0.5288 0.2826 0.4856 0.5525

RHYTHM-LLaMA-1B 0.2929 0.5200 0.5835 0.2931 0.4876 0.5502 0.2913 0.5027 0.5753
RHYTHM-Gemma-2B 0.2923 0.5191 0.5932 0.2943 0.4896 0.5545 0.2953 0.5074 0.5798
RHYTHM-LLaMA-3B 0.2941 0.5205 0.5947 0.2938 0.4875 0.5523 0.2929 0.5032 0.5756

Geographical Evaluation. We evaluate RHYTHM against baseline models using BLEU and DTW,263

which respectively measure n-gram similarity and spatial alignment error between predicted and264

ground-truth trajectories. As shown in Table 2, RHYTHM scores the best DTW performance on265

Sapporo, demonstrating superior spatial alignment. While COLA leads in BLEU scores for all cities,266

RHYTHM ranks second in Kumamoto. This highlights a key trade-off between exact sequence267

matching and minimizing spatial deviations. One potential explanation is that COLA employs a268

post-hoc adjustment technique that recalibrates predictions to better align with the long-tail frequency269

distribution of locations, which may enhance mid-tier accuracy by mitigating overconfidence in dom-270

inant locations. Notably, RHYTHM significantly outperforms LSTM-based methods and transformer271

baselines by leveraging temporal tokenization and prompt-guided reasoning to enhance sequential272

coherence and spatial precision. This results in an optimal balance for real-world mobility tasks. For273

MRR, RHYTHM consistently outperforms all baselines, achieving a 1.44% improvement over the274

best baseline and demonstrates its superior ranking capability across diverse mobility patterns.275

Table 2: Performance comparison of RHYTHM with baselines using geographical metrics. The
evaluation metrics include DTW (↘), BLEU (≃), and MRR (≃), with variance ↗ 2%. The best results
are highlighted in bold, and the second-best results are underlined.

Kumamoto Sapporo Hiroshima
Model DTW BLEU MRR DTW BLEU MRR DTW BLEU MRR

LSTM 5014 0.1564 0.3860 4507 0.1716 0.3270 5908 0.1544 0.3113
DeepMove 4630 0.1746 0.4021 3818 0.1959 0.3887 4981 0.1933 0.3959
PatchTST 5251 0.1315 0.4021 4099 0.1784 0.3773 5021 0.1884 0.3945
iTransformer 6178 0.1275 0.3796 4074 0.1780 0.3730 5094 0.1789 0.3977
TimeLLM 5984 0.1285 0.3912 3915 0.2145 0.3902 5126 0.1988 0.3872
CMHSA 4490 0.1810 0.4158 3786 0.2299 0.4034 4841 0.2289 0.4086
PMT 4536 0.1524 0.3720 3799 0.2017 0.4026 4851 0.2009 0.4065
COLA 4446 0.2064 0.4164 3793 0.2496 0.3996 4840 0.2445 0.4095
ST-MoE-BERT 4691 0.1557 0.4151 3796 0.2102 0.4001 4889 0.2117 0.4031
Mobility-LLM 5603 0.1649 0.3858 3911 0.1917 0.3902 4985 0.2056 0.3990

RHYTHM-LLaMA-1B 4478 0.1793 0.4216 3745 0.2496 0.4045 5059 0.2083 0.4069
RHYTHM-Gemma-2B 4416 0.1928 0.4205 3995 0.2019 0.4065 4857 0.2109 0.4173
RHYTHM-LLaMA-3B 4470 0.1814 0.4220 4035 0.1917 0.4048 4935 0.2093 0.4140

Transferability. To demonstrate that RHYTHM transfers well across pretrained LLMs, we vary276

the size of the pretrained backbone and train it on the mobility prediction datasets (see Table 1 for277

detailed results). In our experiments, we change the size of the pretrained model in RHYTHM278

and test them on the mobility prediction datasets. We use the LLaMA-3.2-1B, LLaMA-3.2-3B,279

and Gemma-2-2B model as the pretrained backbone of RHYTHM. The results indicate that the280

performance of RHYTHM improves as the model size increases. Notably, the LLaMA-3.2-3B and281

Gemma-2-2B model outperforms the LLaMA-3.2-1B model in most metrics. This result demonstrates282
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Overall Performance: RHYTHM outperforms all baselines with 2.4% higher prediction
accuracy across most metrics.

the performance of RHYTHM scales with the LLM size and suggests that larger models may achieve283

even greater performance improvements on larger datasets. Note that our models are pretrained with284

30 epochs. It’s plausible that the LLaMA-3.2-3B model requires more epochs to fully converge285

and realize its full performance potential compared with LLaMA-3.2-1B model. However, the286

LLaMA-3.2-3B model still achieves competitive performance compared to the LLaMA-3.2-1B287

model. Overall, the LLaMA-3.2-3B model demonstrated a 0.40% improvement in Acc@1 compared288

to the LLaMA-3.2-1B model, highlighting the scalability of RHYTHM.289

Figure 3: Training Speed vs. performance of
RHYTHM and baseline models on the Sapporo
Dataset.

Figure 4: Efficiency comparison of alternative
LLMs, evaluated by the same configuration of
Table 4.

Training Speed. To evaluate the training speed of RHYTHM, we conduct experiments on the290

Sapporo dataset using the same training configuration. We run these experiments on a single NVIDIA291

A100 GPU with 40GB of memory. The results are shown in Figure 3. Notably, RHYTHM is292

faster than most baselines in training speed. Although the training speed of RHYTHM is slower293

than LSTM, DeepMove, PatchTST, and iTransformer, it substantially outperforms those models.294

Moreover, RHYTHM maintains computational efficiency comparable to PMT, COLA and ST-MoE-295

BERT, despite having significantly higher parameter counts, demonstrating its parameter-efficient296

design and scalable architecture. Furthermore, RHYTHM’s training speed scales predictably with297

parameter count: LLaMA-3B is 2.2 times slower than LLaMA-1B model, while Gemma-2-2B shows298

a 1.9 times slowdown.299

Daily and Weekly Trend Analysis. We analyze the periodic accuracy trends of RHYTHM and300

baselines on the Sapporo dataset, measuring performance fluctuations across daily and weekly301

intervals Figure 5. RHYTHM mostly outperforms baseline methods in both daily and weekly trends,302

especially during evening peak hours and weekends, achieving 3.4% and 5.0% increase, respectively.303

This aligns with findings from Barbosa et al. [3], indicating that weekend mobility patterns are304

more variable and exhibit transient behaviors. Interestingly, RHYTHM’s performance appears305

less advantageous during periods when people’s movements are highly regular, such as nighttime306

and standard weekday working hours, but excels greatly in dynamic contexts such as weekends307

and evening peak hours where people’s mobility tends to be more unpredictable. This superior308

performance in complex scenarios can be attributed to RHYTHM’s advanced reasoning capabilities309

provided by the LLM backbone, which enables it to capture nuanced decision-making patterns that310

influence human mobility during non-routine periods. In contrast, baselines rely on fixed time-based311

assumptions, limiting their ability to adapt to such dynamic variation in human movement.312

Figure 5: Weekly (left) and daily (right) accuracy trends of RHYTHM and baseline models on
the Sapporo dataset. These results illustrate that prediction performance fluctuates over both daily
and weekly intervals.

4.2 Method Analysis313

In this section, we perform ablation studies to assess the effectiveness of the proposed strategies and314

test the scaling behavior of RHYTHM.315
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Temporal Analysis: Achieves 5.0% improvement on challenging scenarios (week-
ends & peak hours) where baselines struggle.

the performance of RHYTHM scales with the LLM size and suggests that larger models may achieve283

even greater performance improvements on larger datasets. Note that our models are pretrained with284

30 epochs. It’s plausible that the LLaMA-3.2-3B model requires more epochs to fully converge285

and realize its full performance potential compared with LLaMA-3.2-1B model. However, the286

LLaMA-3.2-3B model still achieves competitive performance compared to the LLaMA-3.2-1B287

model. Overall, the LLaMA-3.2-3B model demonstrated a 0.40% improvement in Acc@1 compared288

to the LLaMA-3.2-1B model, highlighting the scalability of RHYTHM.289

Figure 3: Training Speed vs. performance of
RHYTHM and baseline models on the Sapporo
Dataset.

Figure 4: Efficiency comparison of alternative
LLMs, evaluated by the same configuration of
Table 4.
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provided by the LLM backbone, which enables it to capture nuanced decision-making patterns that310
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Efficiency: Reduces training time by 24.6% compared to best baseline while main-
taining superior performance.
Scalability: Performance scales predictably with model size, following established
scaling laws.
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