RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
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through spatio-temporal embedding and temporal tokenization (b), capturing local and global depen-
dencies via hierarchical attention. Segment representations are enriched with semantic embeddings
from trajectory information, while future timestamps incorporate task description context (a). This
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Figure 1: Motivation for RHYTHM. Instead of process-
ing entire trajectories as a continuous sequence, RHYTHM

Overall Performance: RHY THM outperforms all baselines with 2.4% higher prediction
accuracy across most metrics.
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Given:

 Historical trajectory:

X =A{x1,29,...,27}
where Tr; = (ti, lz)

— t;: timestamp
— [; € L: location from finite set £

log1o(Time per Epoch [s]) Logi1o(Time per Epoch [s])
CE, = SE, + TE, Figure 3: Training Speed vs. performance of Figure 4: Efficiency comparison of alternative

RHYTHM and baseline models on the Sapporo LLMs, evaluated by the same configuration of
Dataset. Table 4.
Efficiency: Reduces training time by 24.6% compared to best baseline while main-
taining superior performance.
Scalability: Performance scales predictably with model size, following established

 LLM Reasoning: Leverage pretrained backbone for location prediction

h; = LLM(CE;)

» Future timestamps P(lpy;|X,T) = softmax(Wohpj + bo) scaling laws.
T = {r41.tr42, ... tr1H}
— H: prediction horizon Efficiency Gains: Contact

Objective: Predict future locations Y =

{ZT—|—17 lT+27 R ZT—I—H}
Goal: Learn mapping f: (X, 7)) — Y
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 Offline semantic embedding computation—no runtime LLM inference
» Attention complexity: O((T + H)?) — O((N + H)?) where N < T
* Frozen LLM backbone: only 12.37% trainable parameters



